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First Total Synthesis of Symbioramide, a Novel Ca2+-ATPase

Activator from Symbiodinium sp.
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The first total synthesis of symbioramide (1) is described and
simultaneously established the complete stereostructure of 1 to be
(2S,3R,2'R,3'E)-N-(2'-hydroxy-3'-octadecenoyl)-dihydrosphingosine.

Considerable interest has recently been focused on the bioactive ceramides which are the
important constituents of sphingolipids distributed
Symbioramide 1, a novel ceramide, obtained from

widely in biological membranes.!)
the cultured dinoflagellate Symbiodinium sp.,

isolated from the inside of gill cells of the Okinawa bivalve Fragum sp., is the first example of SR

Ca2+-ATPase activator of marine origin and also exhibits antileukemic activity.z)

In connection with our synthetic studies on sphingolipids,3) this compound attracted our

attention both as a synthetic target and as its biological interest. In addition, a total synthesis of 1

would firmly establish the chemical structure of this compound, especially regarding the

stereochemistry of the 2'-hydroxyl group. We now wish to report the first total synthesis of 1.

D-Erythro-dihydrosphingosine 5§ was readily prepared by catalytic hydrogenation of 3 ([a]p21
-41.3° (¢ 2.685, CHCI3)), obtained from L-serine,%) followed by deprotection, which without
isolation was converted to the acetonide 6 (80%, 4 steps, [0.]1)22 +29.5° (¢ 1.178, CHCI3)) (Scheme 1).
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Scheme 1. a) Ha, PtO5, AcOEt, room temp, 1 h; b) TsOH, MeOH, room temp, 4 h; c) cHCI, AcOEt,

room temp, 25 min; d) CSA, (CH30)2C(CHg)a, reflux, 1 h.
Our effort was then concentrated on the synthesis of the unusual fatty acid methyl ester (S)-20
and (R)-20, starting with readily accessible aldehyde (R)-9 and L-ascorbic acid derivative 8,
To this goal, the enantiomerically pure aldehyde (R)-9, obtained by

respectively (Scheme 2).
NalIO4 oxidation of dicyclohexylidene-D-mannitol 7,5) was converted into the corresponding
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Scheme 2. a) NalQO4, n-BugNBr, Eto0-Ho0, room temp, 3 h; b) LiAIH,4, THF, reflux, 2 h; ¢) NalOyg,
THF-H,0, 0 °C, 2 h; d) PhaP, CBry4, CH2Cly, 0 °C, 20 min; €) n-BuLi, THF, -78 °C, 1 h, then 0°C, 1 h;
f) (i) n-BuLi, THF, -78 °C, then 0 °C, 1 h, (i) CH3(CH2)130Ts, THF-HMPA, -78 °C, then room temp, 2
h; g) cHCI, EtOH, reflux, 4 h; h) LiAlH4, CH30(CH2),0CHg, refrux, 3 h; i) PhaCCl, DMAP, pyridine,
100 °C, 2 h; j) MEMCI, FPraNEt, CHoCly, room temp, 18 h; k) MOMCI, FPraNEt, CHoCly, retflux, 30
min; §) TsOH, MeOH-CH,Cly, room temp, 40 min; m) PDC, DMF, 40-50 °C, 3 h; n) CHal, FProNEt,

CHxClp, room temp, 15 h; 0) ZnBrs, CH,Cl, reflux, 8 h; p) BF3-Et20, EtSH, room temp, 40 min.

olefin (S)-10 ([a]p23 -5.23° (¢ 0.968, CHCl3)). Treatment of (S)-10 with n-BuLi provided the
alkyne (S)-11 ([a]D24 +39.3° (¢ 0.890, CHCI3)) which was alkylated to afford (S)-12 (47%, 2 steps,
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[Q]DZS +22.7° (¢ 1.020, CHCl3)). Deprotection of (S)-12 gave the diol (S)-13 ([on]])24 +11.2° (¢ 0.920,
CHCI3)) which was led to (S)-14 (43%, 2steps, [a]D29 +9.05° (¢ 0.398, CHCI3)) by stereoselective
LiAlH4 reduction.® Tritylation of (S)-14 followed by protection of the secondary alcohol gave
(S)-16, which on detritylation, afforded (S)-17 (54%, 3 steps, [QL]D21 +73.2° (¢ 1.242, CHCI3)).
Subsequent PDC oxidation of (S)-17 provided the acid (S)-18, which was isolated as its methyl
ester (S)-19 (41%, 2 steps, [a]D20 +68.0° (¢ 0.500, CHCI3)). Deprotection of (S)-19 gave methyl
(2S,3E)-2-hydroxyoctadec-3-enoate (S)-20 (73%, [oz]])19 +46.4° (¢ 0.278, CHCI3)).

By analogy, the same multi-step sequence starting from cyclohexylidene-L-glyceraldehyde
(S)-9, which was obtained by LiAlH4 reduction of 8 followed by NalO4 oxidation, afforded the
alcohol (R)-17 ([a]p 13 -73.7° (¢ 0.904, CHCI3)). The latter, on treatment with PDC, followed by
methylation and deprotection provided the optically active ester (R)-20 ([ou]l)19 -44.7° (¢ 0.257,
CHCl13)) which was identified with the ester obtained from acidic hydrolysis of natural 1 by
comparison with the physico-chemical properties (Table l),2'7) showing thus the absolute
stereochemistry at C-2' position to be (R)-configuration.

Finally, the coupling reaction of (R)-18 with 6 led to the formation of the amide 21.
Deprotection of the acetonide and the alcohol function was achieved selectively by treatment
with TsOH-MeOH followed by BF3-Et20-EtSH to give symbioramide 1 (24% from (R)-17, mp 112-113
°C (benzene/acetone), [()t]])19 +2.65° (¢ 0.378, CHCI3)). Acetylation of 1 gave the triacetate 2 (97%,
mp 75-78 °C) (Scheme 3). The spectral data (IR, NMR, mass) of synthetic 1 and 2 were identical

with those of natural product and its triacetate, respectively (Table 1).2)
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In conclusion, the present synthesis unambiguously established the absolute configuration of
1, (2S,3R,2'R,3'E)-N-(2'-hydroxy-3'-octadecenoyl)-dihydrosphingosine.
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Table 1. Spectral data for 1,2, and (R)-20

1: IR (KBn): vy [cm~1]= 3300, 1640, 1530, 1460, and 1060. 1H NMR (500 MHz, CDCI3): §= 7.02 (d, J=7.69
Hz, 1H; NH, exch.), 5.90 (dt, J=14.3, 7.0 Hz, 1H; H-4"), 5.56 (dd, J=15.3, 7.3 Hz, 1H; H-3'), 4.53 (dd, J=7.15,
3.58 Hz, 1H; H-2"), 4.03 (dt, J=11.6, 3.58 Hz, 1H; H-1), 3.83-3.76 (m, 3H; H'-1, H-2, and H-3), 3.15 (d, J=3.3
Hz, 1H; OH-2', exch.), 2.64 (br.s, 1H; OH-1, exch.), 2.51 (d, J=6.04 Hz, 1H; OH-3, exch.), 2.08 (q like, 2H;
H2-5"), 1.55-1.50 (m, 2H; Hp-4), 1.41-1.36 (m, 2H; H2-6"), 1.31-1.26 (m, 48H), 0.88 (t, J=6.88 Hz, 6H; H3-
18 and H3-18"). EIMS: m/z 581 (M*, 1.23%), 328 (40.22), 253 (45.87), 43 (100). (Found: C, 74.51; H,
12.29; N, 2.36. C36H7104N requires C, 74.30; H, 12.30; N, 2.41%)

2: IR (KBn): y [cm~1]= 3300, 1730, 1660, 1540, 1460, and 1030. 1H NMR (500 MHz, CDCl3): 3= 6.52 (d,
J=8.8 Hz, 1H; NH), 5.90 (dt, J=14.6, 7.0 Hz, 1H; H-4), 5.52(dd, J=15.4, 7.15 Hz, 1H; H-3'), 5.49 (d, J=7.15 Hz,
1H; H-2'), 4.90 (dt, J=8.25, 4.95 Hz, 1H; H-3), 4.38-4.33 (m, 1H; H-2), 4.31 (dd, J=11.27, 6.87 Hz, 1H; H-1),
4.04 (dd, J=11.27, 3.29 Hz, 1H; H'-1), 2.18 (s, 3H; Ac), 2.07 (s, 3H; Ac), 2.04 (s, 3H; Ac), 2.08-2.04 (m, 2H;
H2-5%, 1.62-1.57 (m, 2H; H2-4), 1.39-1.35 (m, 2H; H2-6"), 1.31-1.25 (m, 48H), 0.88 (t like, 6H; H3-18 and
H3-18'). EIMS: m/z 708 (M*, 1.00%), 707 (M*-H, 2.29), 648 (M*-AcOH, 19.69), 370 (100).

(R)-20: IR (KBr): y [cm-1]= 3350, 1760, 1470, and 970. lH NMR (500 MHz, CDCl3): 8= 5.88 (dt, J=15.4,
6.87 Hz, 1H; H-4), 5.50 (dd, J=15.4, 6.33 Hz, 1H; H-3), 4.61 (t, J=6.05 Hz, 1H; H-2), 3.80 (s, 3H; CO2Me),
2.83 (d, J=5.77 Hz, 1H; OH, exch.), 2.06 (q like, 2H; H2-5), 1.40-1.37 (m, 2H; H2-6), 1.31-1.26 (m, 22H),
0.88 (1, J=6.88 Hz, 3H; H3-18). EIMS: m/z 312 (M*, 0.86%), 253 (M+-CO2Me, 100).
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